
1,2Philippe J. R. Kok, 1,4Valerio G. Russo, 1,6Sebastian Ratz, and 2,6Fabien Aubret

1Amphibian Evolution Lab, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, BELGIUM 2Station d’Ecologie Expériementale du CNRS à Moulis, USR 2936, 09200 Moulis, FRANCE

Abstract.—It has been suggested that the inability to migrate in response to climate change is a key threat to tepui summit biota. Tepui summit organisms might thus seriously be threatened by global warming, and there is an urgent need to accurately evaluate their taxonomic status and distributions. We investigated phylogenetic relationships among several populations of *Stefania ginesi* and *S. satelles*, two endemic species reported from some isolated tepui summits, and we examined their IUCN conservation status. Molecular phylogenetic analysis and preliminary morphological assessment indicate that both species are actually restricted to single tepui summits and that five candidate species are involved under these names. We advocate upgrading the conservation status of *S. ginesi* from Least Concern to Endangered, and that of *S. satelles* from Near Threatened to Endangered.

Key words. Endangered species, Hemiphractidae, IUCN, molecular phylogenetics, molecular taxonomy, Venezuela

Copyright: © 2016 Kok et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the official and authorized publication sources are recognized and properly credited. The official and authorized publication credit sources, which will be duly enforced, are as follows: official journal title Amphibian & Reptile Conservation; official journal website <amphibian-reptile-conservation.org>.

Received: 08 March 2016; **Accepted:** 29 March 2016; **Published:** 12 April 2016

Introduction

The frog genus *Stefania* (Hemiphractidae) is endemic to an iconic South American biogeographical region named “Pantepui” (Mayr and Phelps 1967; McDiarmid and Donnelly 2005) (Fig. 1). Pantepui, often referred to as the “Lost World” because of Arthur Conan Doyle’s famous novel (1912), lies in the western Guiana Shield. The region harbors numerous isolated Precambrian sandstone tabletop mountains more formally known as “tepuis” (Fig. 2). Although Pantepui was initially restricted to tepui slopes and summits above 1,500 m elevation (Mayr and Phelps 1967; Rull and Nogué 2007), Steyermark (1982), followed by Kok et al. (2012) and Kok (2013a), expanded the original definition of Pantepui to include the intervening Pantepui lowlands (200-400 m asl) and uplands (400-ca. 1,200 m asl) in order to better reflect the biogeography and biotic interactions in the area (Kok 2013a). The genus *Stefania* currently includes 19 species, 15 of which are restricted to tepui slopes or summits (Duellman 2015; Frost 2015). *Stefania* species are direct-developers (eggs and juveniles carried on the back of the mother) and occupy various types of habitats from lowland rainforest to tepui bogs (Kok 2013a; Schmid et al. 2013; Duellman 2015). The genus *Stefania* was erected by Rivero (1968) to accommodate *Cryptobatrachus evansi* and a few related new species all morphologically divergent from other *Cryptobatrachus*. Shortly later, Rivero (1970) recognized two species-groups within *Stefania*: the *evansi* group including species having the head longer than broad and found in the lowlands and uplands of Pantepui, and the *goini* group including species having the head broader than long and found in the highlands of Pantepui. Kok et al. (2012), followed by Castroviejo et al. (2015), showed that, based on molecular data, these groups are actually not reciprocally monophyletic. A complete molecular phylogenetic analysis of the genus *Stefania* is still lacking, and
relationships between many species or populations are unknown. Likewise, the exact distribution of some tepui summit species is uncertain (e.g., Gorzula and Señaris 1999). Among these, two tepui summit endemic Stefania species are known from several isolated tepui summits: Stefania ginesi Rivero, 1968, which is reported from six tepuis in the Chimantá massif (Chimantá-tepui, Amurí-tepui, Abakapá-tepui, Churí-tepui, Akopán-tepui, and Murei-tepui; Señaris et al. 1997; Gorzula and Señaris 1999; Barrio-Amorós and Fuentes 2012; Fig. 1), and Stefania satelles Señaris, Ayarzagüena, and Gorzula, 1997, which has a highly disjunct distribution, being reported from Aprada-tepui (in the Aprada Massif), Angasima-tepui, and Upuigma-tepui (two southern outliers of the Chimantá massif), and from Murisipán-tepui and Kamarkawarai-tepui (in the Los Testigos Massif, north of the Chimantá massif) (Señaris et al. 1997; Gorzula and Señaris 1999; Fig. 1). Stefania ginesi is listed as Least Concern (LC) by the International Union for Conservation of Nature (IUCN) (Stuart et al. 2008) and S. satelles is listed as Near Threatened (NT) (Stuart et al. 2008). However, preliminary data suggest that their respective distributions could be more restricted than initially thought because more than two species could be involved under these names (the authors, unpublished; see also Señaris et al. 2014 regarding the distribution of S. ginesi). Herein we used molecular phylogenetics to investigate the relationships among three populations of S. ginesi and four populations of S. satelles. We also aim at providing a more precise distribution of these two taxa in order to refine their conservation status. Indeed, tepui ecosystems are reported as particularly sensitive to global warming (Noguë et al. 2009), and tepui summit organisms might be seriously threatened by habitat loss due to upward displacement (Rull and Vegas-Vilarrúbia 2006; see also below). Likewise, climate envelope distribution models of tepui ecosystems based on future scenarios show that potential distributions become drastically smaller under global warming (Rödder et al. 2010). Species restricted to tepui summits are thus clearly at risk of extinction, and there is an urgent need to evaluate their exact taxonomic status and precise distribution.

Materials and Methods

Tissue sampling and molecular data

We combined available GenBank sequences of Stefania ginesi and S. satelles for fragments of the mitochondrial 16SrRNA gene (16S) and the protein-coding mitochondrial gene NADH hydrogenase subunit 1 (ND1) with 40 novel DNA sequences of Stefania ginesi and S. satelles: nine of fragments of 16S, five of ND1, 13 of the nuclear recombination activating gene 1 (RAG1), and 13 of the nuclear CXC chemokine receptor type 4 gene (CXCR4). We combined this dataset with DNA sequences of four additional members of the genus Stefania from outside the studied area (three species from east of the Rio Caroni: S. scalae, an upland species, S. riveroi and S. schuberti, two highland species; and one highland spe-
cies from west of the Rio Caroni: S. riae; in total 16 novel sequences), and with Fritziana ohausi, member of the clade sister to Stefania (Castroviejo et al. 2015), which was selected as outgroup (see Table 1). Novel sequences have been catalogued in GenBank under the accession numbers KU958582-958637.

Total genomic DNA was extracted and purified using the Qiagen DNeasy® Tissue Kit following manufacturer’s instructions. Fragments of 16S (ca. 550 base pairs [bp]), of ND1 (ca. 650 bp), and of RAG1 (ca. 550 bp) and CXCR4 (ca. 625 bp) were amplified and sequenced using the primers listed in Kok et al. (2012) and Biju and Bossuyt (2003) under previously described PCR conditions (Biju and Bossuyt 2003; Roelants et al. 2007; Van Bocxlaer et al. 2010). PCR products were checked on a 1% agarose gel and were sent to BaseClear (Leiden, The Netherlands) for purification and sequencing. Chromatograms were read using CodonCode Aligner 5.0.2

Table 1. List of Stefania taxa and outgroup used in this study, with localities and GenBank accession numbers. Sequences newly generated are in boldface. IRSNB = Institut Royal des Sciences Naturelles de Belgique, Belgium; MZUSP = Museu de Zoologia, Universidade de São Paulo, Brazil.

<table>
<thead>
<tr>
<th>Voucher</th>
<th>16S</th>
<th>ND1</th>
<th>RAG1</th>
<th>CXCR4</th>
<th>Genus</th>
<th>Species</th>
<th>Locality</th>
<th>Country</th>
<th>Coordinates</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRSNB16724</td>
<td>JQ742191</td>
<td>JQ742362</td>
<td>KU958609</td>
<td>KU958619</td>
<td>Stefania</td>
<td>scalae</td>
<td>Salto El Danto</td>
<td>Venezuela</td>
<td>N 5°57'52" W 61°23'31"</td>
<td>1208</td>
</tr>
<tr>
<td>Uncatalogued</td>
<td>JQ742172</td>
<td>JQ742343</td>
<td>KU958601</td>
<td>KU958620</td>
<td>Stefania</td>
<td>riae</td>
<td>Sarairilama-tepui</td>
<td>Venezuela</td>
<td>N 4°41' W 64°13'</td>
<td>ca. 1100</td>
</tr>
<tr>
<td>IRSNB15703</td>
<td>JQ742177</td>
<td>JQ742348</td>
<td>KU958602</td>
<td>KU958621</td>
<td>Stefania</td>
<td>riveroi</td>
<td>Yuruni-tepui</td>
<td>Venezuela</td>
<td>N 5°18'30" W 60°51'50"</td>
<td>2303</td>
</tr>
<tr>
<td>IRSNB15716</td>
<td>JQ742178</td>
<td>JQ742349</td>
<td>KU958603</td>
<td>KU958622</td>
<td>Stefania</td>
<td>riveroi</td>
<td>Yuruni-tepui</td>
<td>Venezuela</td>
<td>N 5°18'50" W 60°51'50"</td>
<td>2303</td>
</tr>
<tr>
<td>IRSNB16725</td>
<td>JQ742173</td>
<td>JQ742344</td>
<td>KU958604</td>
<td>KU958623</td>
<td>Stefania</td>
<td>"ginesi"</td>
<td>Abakapá-tepui</td>
<td>Venezuela</td>
<td>N 5°11'23" W 62°17'52"</td>
<td>2137</td>
</tr>
<tr>
<td>IRSNB16726</td>
<td>JQ742174</td>
<td>JQ742345</td>
<td>KU958605</td>
<td>KU958624</td>
<td>Stefania</td>
<td>"ginesi"</td>
<td>Abakapá-tepui</td>
<td>Venezuela</td>
<td>N 5°11'07" W 62°17'21"</td>
<td>2209</td>
</tr>
<tr>
<td>IRSNB15839</td>
<td>JQ742175</td>
<td>JQ742346</td>
<td>KU958606</td>
<td>KU958625</td>
<td>Stefania</td>
<td>"satelles"</td>
<td>Angasima-tepui</td>
<td>Venezuela</td>
<td>N 5°02'36" W 62°04'51"</td>
<td>2122</td>
</tr>
<tr>
<td>IRSNB15844</td>
<td>JQ742176</td>
<td>JQ742347</td>
<td>KU958607</td>
<td>KU958626</td>
<td>Stefania</td>
<td>"satelles"</td>
<td>Angasima-tepui</td>
<td>Venezuela</td>
<td>N 5°02'36" W 62°04'51"</td>
<td>2122</td>
</tr>
<tr>
<td>IRSNB16727</td>
<td>KU958582</td>
<td>KU958593</td>
<td>KU958608</td>
<td>KU958627</td>
<td>Stefania</td>
<td>"satelles"</td>
<td>Upuigma-tepui</td>
<td>Venezuela</td>
<td>N 5°05'10" W 61°57'32"</td>
<td>2134</td>
</tr>
<tr>
<td>IRSNB16728</td>
<td>KU958583</td>
<td>—</td>
<td>KU958609</td>
<td>KU958628</td>
<td>Stefania</td>
<td>sattelles</td>
<td>Arajá-tepui</td>
<td>Venezuela</td>
<td>N 5°24'39" W 62°27'00"</td>
<td>2551</td>
</tr>
<tr>
<td>IRSNB16729</td>
<td>KU958584</td>
<td>—</td>
<td>KU958610</td>
<td>KU958629</td>
<td>Stefania</td>
<td>sattelles</td>
<td>Arajá-tepui</td>
<td>Venezuela</td>
<td>N 5°24'43" W 62°27'03"</td>
<td>2576</td>
</tr>
<tr>
<td>IRSNB16730</td>
<td>KU958585</td>
<td>KU958594</td>
<td>KU958611</td>
<td>KU958630</td>
<td>Stefania</td>
<td>"ginesi"</td>
<td>Amuri-tepui</td>
<td>Venezuela</td>
<td>N 5°08'34" W 62°07'08"</td>
<td>2215</td>
</tr>
<tr>
<td>IRSNB16731</td>
<td>KU958586</td>
<td>KU958595</td>
<td>KU958612</td>
<td>KU958631</td>
<td>Stefania</td>
<td>"ginesi"</td>
<td>Amuri-tepui</td>
<td>Venezuela</td>
<td>N 5°08'35" W 62°07'08"</td>
<td>2213</td>
</tr>
<tr>
<td>IRSNB16732</td>
<td>KU958587</td>
<td>KU958596</td>
<td>KU958613</td>
<td>KU958632</td>
<td>Stefania</td>
<td>schuberti</td>
<td>Auyán-tepui</td>
<td>Venezuela</td>
<td>N 5°45'56" W 62°52'25"</td>
<td>2279</td>
</tr>
<tr>
<td>IRSNB16733</td>
<td>KU958588</td>
<td>KU958597</td>
<td>KU958614</td>
<td>KU958633</td>
<td>Stefania</td>
<td>schuberti</td>
<td>Auyán-tepui</td>
<td>Venezuela</td>
<td>N 5°45'56" W 62°52'25"</td>
<td>2279</td>
</tr>
<tr>
<td>IRSNB16734</td>
<td>KU958589</td>
<td>KU958598</td>
<td>KU958615</td>
<td>KU958634</td>
<td>Stefania</td>
<td>"satelles"</td>
<td>Murisipán-tepui</td>
<td>Venezuela</td>
<td>N 5°52'03" W 62°04'30"</td>
<td>2419</td>
</tr>
<tr>
<td>IRSNB16735</td>
<td>KU958590</td>
<td>KU958599</td>
<td>KU958616</td>
<td>KU958635</td>
<td>Stefania</td>
<td>"satelles"</td>
<td>Murisipán-tepui</td>
<td>Venezuela</td>
<td>N 5°52'03" W 62°04'30"</td>
<td>2419</td>
</tr>
<tr>
<td>IRSNB16736</td>
<td>KU958591</td>
<td>—</td>
<td>KU958617</td>
<td>KU958636</td>
<td>Stefania</td>
<td>ginesi</td>
<td>Chimantá-tepui</td>
<td>Venezuela</td>
<td>N 5°19'12" W 62°12'07"</td>
<td>2180</td>
</tr>
<tr>
<td>IRSNB16737</td>
<td>KU958592</td>
<td>—</td>
<td>KU958618</td>
<td>KU958637</td>
<td>Stefania</td>
<td>ginesi</td>
<td>Chimantá-tepui</td>
<td>Venezuela</td>
<td>N 5°19'12" W 62°12'07"</td>
<td>2180</td>
</tr>
</tbody>
</table>

Fig. 2. Typical Pantepui landscape. Photograph taken on 8th June 2012 from the summit of Upuigma-tepui, showing Angasima-tepui on the left and Akopán-tepui and Amuri-tepui on the right. Note stretches of savannah mainly caused by anthropogenic fires. Photo PJRK.
Kok et al.

Molecular phylogenetic analyses

The combined 16S + ND1 + RAG1 + CXCR4 dataset (totalling 2,359 bp after exclusion) was subjected to phylogenetic inference using Bayesian analyses. Optimal partitioning schemes were estimated with PartitionFinder v1.1.1 (Lanfear et al. 2012) using the “greedy” algorithm, the “mrbayes” set of models, and the Bayesian Information Criterion (BIC) to compare the fit of different models. Bayesian posterior probabilities (PP) were used to estimate clade credibility in MrBayes 3.2.2 (Ronquist et al. 2012) on the CIPRES Science Gateway V 3.3 (https://www.phylo.org/, Miller et al. 2010). The Bayesian analyses implemented the best substitution models inferred by PartitionFinder v1.1.1 partitioned over the different gene fragments, flat Dirichlet priors for base frequencies and substitution rate matrices and uniform priors for among-site rate parameters. Four parallel Markov chain Monte Carlo (MCMC) runs of four incrementally heated (temperature parameter = 0.2) chains were performed, with a length of 20,000,000 generations, a sampling frequency of 1 per 1,000 generations, and a burn-in corresponding to the first 1,000,000 generations. Convergence of the parallel runs was confirmed by split frequency SDs (<0.01) and potential scale reduction factors (~1.0) for all model parameters, as reported by MrBayes. All analyses were checked for convergence by plotting the log-likelihood values against generation time for each run, using Tracer 1.5 (Rambaut and Drummond 2009). Effective sample sizes (ESS) largely over 200 were obtained for every parameter. Results were visualized and edited in FigTree 1.4.1 (Rambaut 2014).

Results

Stefania ginesi and *S. satelles* as currently recognized are recovered non-reciprocally monophyletic (Fig. 3). Our molecular phylogeny also reveals the occurrence of five candidate species (sensu Padial et al. 2010) that have been misidentified for more than a decade as *S. ginesi* (two candidate species) or *S. satelles* (three candidate species) (e.g., Señaris et al. 1997; Gorzula and Señaris 1999). Preliminary morphological analyses (in progress) indicate a few, sometimes subtle, morphological characters allowing discrimination among these candidate spe-

![Fig. 3. Phylogenetic relationships as recovered in the MrBayes analysis (concatenated dataset, 2359 bp), outgroup not shown. Values at each node represent Bayesian posterior probabilities; asterisks indicate values > 95%. *Stefania ginesi* sensu stricto, and *S. satelles* sensu stricto are highlighted in red. Relation between eye color and tepui summit surface is indicated on the right side of the figure. Photos PJRK.](http://www.codoncode.com/index.htm) and a consensus sequence was assembled from the forward and reverse primer sequences. MAFFT version 7 (http://mafft.cbrc.jp/alignment/server/) was used to perform preliminary alignment using G-INS-i and default parameters. Minor alignment corrections were made using MacClade 4.08 (Maddison and Maddison 2005). Protein-coding sequences were translated into amino-acid sequences to check for unexpected stop codons. Alignment-ambiguous regions of 16S were excluded from subsequent analyses.

(http://www.codoncode.com/index.htm)
cies and \textit{S. ginesi} and \textit{S. satelles}. Our combined results indicate that \textit{S. ginesi} sensu stricto is likely restricted to its type locality, Chimantá-tepui, as we suspect that populations from other tepuis in the Chimantá Massif that were not sampled in this study will prove to be distinct as well. As for \textit{S. satelles}, the species is restricted to its type locality, Aprada-tepui.

Discussion and conservation recommendations

We assumed that misidentifications were likely due to a rather conserved external morphology (e.g., head broader than long, skin strongly granular, absence of prominent cranial crests) of all tepui summit species previously identified as \textit{Stefania ginesi} or \textit{S. satelles}. This conserved morphology appears to be symplesiomorphic, and probably the result of an allopatric non-adaptive radiation (lineage diversification with minimal ecological diversification, see Rundell and Price 2009). It is, however, intriguing that two slightly divergent phenotypes (a "\textit{satelles} phenotype" with brown eyes and a "\textit{ginesi} phenotype" with blue eyes) evolved independently in each subclade (see Fig. 3). Interestingly, selection towards one of these two phenotypes seems closely associated with the size of the summit surface on which the species occur (see Fig. 3). The "\textit{ginesi} phenotype" is found on large tepui summits (surface > 25 km\(^2\)) in the central Chimantá Massif, whereas the "\textit{satelles} phenotype" is found on much smaller tepui summits (surface < 5 km\(^2\)) in the periphery of the core Chimantá Massif. Disentangling this phenomenon and the nature of the ecological constraints possibly involved and their influence on phenotypic trajectories is beyond the scope of this paper and will be treated in a separate study.

Most importantly, our results have direct implications on the conservation status of the populations under study. A complete taxonomic revision of the genus is in progress, but meanwhile we wish to emphasize the restricted distributions of all the populations previously known as \textit{Stefania ginesi} or \textit{S. satelles}. Our results argue for the upgrading of the conservation status of \textit{S. ginesi} from LC to Endangered (EN), and that of \textit{S. satelles} from NT to EN, based on the same argument recently developed for other species restricted to the summit of one or two tepuis, e.g., \textit{Pristimantis inthurni} and \textit{P. jamescameroni} (Kok 2013b), or \textit{P. aureoventris} (IUCN SSC Amphibian Specialist Group 2014), thus in accordance with criteria B1 a-b (iii) and B2 a-b (iii) of the IUCN Red List of Threatened Species (IUCN 2014). We indeed argue that (1) extents of occurrence of \textit{S. ginesi} and \textit{S. satelles} are much less than 5,000 km\(^2\) (less than 100 km\(^2\) and five km\(^2\), respectively); (2) areas of occupancy of \textit{S. ginesi} and \textit{S. satelles} are much less than 500 km\(^2\) (less than 100 km\(^2\) and five km\(^2\), respectively); (3) there is an inferred and projected decline in the quality of habitat due to the effects of global warming upon tepui ecosystems, with an expected 2–4 °C increase in temperature in the region through the next century (IPCC 2007). As stressed by Nogué et al. (2009) and Rödder et al. (2010), this rise in temperature will likely cause a decrease in habitat suitability for tepui biota. In addition, numerous anthropogenic fires in the region (Means 1995; Rull et al. 2013, 2016), coupled with a global rise of temperature, may cause an up to 10% decrease in precipitation (IPCC 2007) instigating an increase in fire range and intensity (Rull et al. 2013, 2016); and (4) the altitudinal range of \textit{Stefania ginesi} and \textit{S. satelles} allows no vertical migration in order to avoid these threats. As mentioned by Rull and Vegas-Vilarrubia (2006), the inability to migrate to compensate for the climate change is a key threat to tepui summit biota.

There is an urgent need to gain a greater understanding of species boundaries and distributions in Pantepui, especially in Venezuela where the threats are the highest due to ongoing uncontrolled anthropogenic fires (Rull et al. 2013, 2016). However, it is assumed that an even greater threat to Pantepui biota is global climate change. Local actions (such as stopping fires), even if necessary, might only have a limited impact on the long-term survival of Pantepui organisms. Conservation awareness is critically important in the area, notably due to the inaccessible of tepui ecosystems where an out of sight, out of mind effect may have taken place.

This study adds to the many studies now available demonstrating that estimates of amphibian diversity based on morphology alone are often misleading. Molecular data have indeed been shown to be of great help in detecting cryptic species (e.g., Hebert et al. 2004; Vences et al. 2005; Fouquet et al. 2007; Burns et al. 2008; Fouquet et al. 2016). Unfortunately, while everyone seems to agree that gaining a greater understanding of the world biodiversity is needed in order to prioritize biodiversity conservation (e.g., Wilson 2016), the task turns more and more often into a bureaucratic obstacle course, if not an impossible mission for scientists working with molecular data.

Acknowledgments.—PJRK’s work is supported by a postdoctoral fellowship from the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO12A7614N). Many thanks are due to C.L. Barrio-Amorós (Doc Frog Expeditions, Costa Rica) and C. Brewer-Carias (Caracas, Venezuela) for the loan of tissue samples. C. Brewer-Carias also provided invaluable advice and help with logistics in Venezuela.

Literature Cited

Vlček L. Comenius University, Bratislava, Slovakia. 168 p.
Rivero JA. 1968 “1966”. Notes on the genus Cryptobatrachus (Amphibia, Salientia) with the description of
a new race and four new species of a new genus of hy-
Rivero JA. 1970. On the origin, endemism and distribu-
tion of the genus *Stefania* Rivero (Amphibia, Salien-
tia) with a description of a new species from south-
eastern Venezuela. *Boletín de la Sociedad Venezolana
Rödder D, Schlüter A, Lötters S. 2010. Is the “Lost
World” Lost? High Endemism of Aphiibians (sic) and
Reptiles on South American Tepuis in a Changing
Climate. Pp. 401–416 In: *Relict Species: Phylogeog-
raphy and Conservation Biology*. Editors, Habel JC,
Assmann T. Springer Berlin Heidelberg, Germany.
451 p.
Roelants K, Gower DJ, Wilkinson M, Loader SP, Biju
SD, Guillaume K, Moriau L, Bossuyt F. 2007. Global
patterns of diversification in the history of modern
amphibians. *Proceedings of the National Academy
of Sciences of the United States of America* 104: 887–
892.
Ronquist F, Teslenko M, van der Mark P, Ayres DL,
Darling A, Höhna S, Larget B, Liu L, Suchard MA,
Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayes-
ian phylogenetic inference and model choice across a
Rull V, Vegas-Vilarrúbia T. 2006. Unexpected biodi-
versity loss under global warming in the neotropical
Rull V, Vegas-Vilarrúbia T, Montoya E. 2016. The neo-
tropical Gran Sabana region: Palaeoecology and con-
Rull V, Montoya E, Noguè S, Vegas-Vilarrúbia T, Safont
E. 2013. Ecological palaeoecology in the neotropical
Gran Sabana region: Long-term records of vegetation
dynamics as a basis for ecological hypothesis testing.
*Perspectives in Plant Ecology, Evolution and System-
Rundell RJ, Price TD. 2009. Adaptive radiation, non-
adaptive radiation, ecological speciation and noneco-
logical speciation. *Trends in Ecology and Evolution*
Schmid M, Steinlein C, Bogart JP, Feichtinger W, Haaf
T, Nanda I, del Pino EM, Duellman WE, Hedges SB.
2013 “2012.” The hemiphractid frogs. Phylogeny,
embryology, life history, and cytogenetics. *Cytoge-
Señaris JC, Ayarzagüëna J, Gorzula S. 1997 “1996.” Re-
visión taxonómica del género *Stefania* (Anura: Hyli-
da) en Venezuela con la descripción de cinco nuevas
especies. *Publicaciones de la Asociación Amigos de
Doñana* 7: 1–57.
Señaris JC, Lampo M, Rojas-Runjaic FJM, Barrio-
Amarós CL. 2014. *Guía ilustrada de los anfibios del
Parque Nacional Canaima, Venezuela*. Altos de Pipe,
Steyermark JA. 1982. Relationships of some Venezue-
lan forest refuges with lowland tropical floras. Pp.
182–220 In: *Biological Diversification in the Tropics*.
Editor, Prance GT. Columbia University Press, New
York, USA. 714 p.
Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge
Amphibians of the World*. Lynx Edicions, Barcelona,
Spain; IUCN, Gland, Switzerland; and Conservation
Van Bocxlaer I, Loader SP, Roelants K, Biju SD, Menegon
M, Bossuyt F. 2010. Gradual adaptation toward a
range-expansion phenotype initiated the global radia-
Deciphering amphibian diversity through DNA bar-
coding: chances and challenges. *Philosophical Trans-
actions of the Royal Society London B* 360: 1,859–
1,868.
Wilson EO. 2016. Half-Earth, Our Planet’s Fight for
Life. Livelight Publishing Corporation, New York,
New York, USA. 272 p.
Sebastian Ratz has a Bachelor’s degree in biology from the University of Tübingen, Germany. He currently works on his Master thesis (phylogeography of the genus Oreophrynella) at the Vrije Universiteit Brussel, Belgium. His main interests focus on the diversity and evolution of Neotropical amphibians.

Philippe J.R. Kok is a Belgian evolutionary biologist and herpetologist. He obtained his Ph.D. in biology at the Leiden University (The Netherlands) in 2013. He is currently postdoctoral researcher at the Vrije Universiteit Brussel, Belgium, where he teaches Field Herpetology to the second year Master students. His interests are eclectic, the main ones being the evolution, systematics, taxonomy, biogeography, and conservation of amphibians and reptiles in the Neotropics, more specifically from the Guiana Shield. His work now primarily focuses on vertebrate evolution in the Pantepui region.

Valerio G. Russo is an Italian herpetologist and naturalist mainly interested in Neotropical and Mediterranean biodiversity. He obtained his Master’s degree in biology in 2015 at the Vrije Universiteit Brussel (VUB), Belgium, with a thesis on the systematics of the frog genus Stefania. He is now collaborating as an independent researcher with the Biology Department of the VUB.

Valerie G. Russo has a Bachelor’s degree in biology from the University of Tübingen, Germany. He currently works on his Master thesis (phylogeography of the genus Oreophrynella) at the Vrije Universiteit Brussel, Belgium. His main interests focus on the diversity and evolution of Neotropical amphibians.

Fabien Aubret is a French evolutionary biologist and herpetologist. He completed his Doctoral and Post-doctoral studies between 2001 and 2008 in Australia (University of Western Australia and University of Sydney). Since 2009, he has been working as a full time researcher for the CNRS (National Centre for Scientific Research) at the Station of Theoretical and Experimental Ecology (SETE, Moulis, France). Fabien’s research is mostly empirical, with an experimental backbone, and involves a variety of snake and lizard models. His research is pluri-disciplinary and involves eco-physiology, phenotypic plasticity, climate change, thermoregulation, and reproductive biology.